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Automated adeno/squamous-cell NSCLC classification from diagnostic slide images: A deep-learning framework utilizing cell-density maps
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BACKGROUND

The most common form of lung cancer, non-small cell lung cancer (NSCLC), is
further classified into two major histopathological subtypes: ~40%
Adenocarcinoma (LUAD), and ~30% squamous cell carcinoma (LUSC).
Classifying tumors accurately is important for prognosis and therapy
decisions, but requires costly pathologist review.

Here we present an automated algorithm to differentiate LUAD and LUSC

subtypes using diagnostic whole slide images (WSIs).

METHODS

488 subtyped NSCLC high-resolution diagnostic WSIs were obtained from
TCGA sources. Samples were randomly split into 338 (70%) training and 150
(30%) testing sets.

All 100 micron 2D color patches were transformed into 1D descriptive
vectors using the inception v3 deep learning framework.

We trained an expert system (ResNet-34 convolutional neural network) to
identify tumor patches from adjacent-normal tissue, and such regions were
analyzed separately. See Figures 1 and 2.

We also trained an algorithm to count cells in each 2D color patch. The cell
count system has modules for Color Deconvolution, Local Drain, and
Watershed Segmentation. Sample cell maps are shown in Figure 3.

The generated tumor mask and cell density map (in addition to 1D
descriptive vectors of 100 micron 2D color patches in target WSI) were used
as inputs into the adeno/squamous-cell NSCLC classifier in Figure 4.

1D descriptive vectors were placed into 10 discrete bins based on their cell-
density (i.e. 20-30 cells per patch, 30-40, etc. up to >110 cells per patch).
Ten LUAD/LUSC linear SVM classifiers (one for each cell-density bin) were
trained on such transformed data.

Subtype prediction in the held-out 30% of unseen testing samples was

achieved by averaging subtype predictions from the 10 subsequent models

RESULTS

Figure 1. Expert guided tumor/normal masking. A browser-based tool was developed to capture
expert opinion on tumor or normal tissue points. These points were used to generate whole-slide
masks. The mask was then iteratively refined by selection of more tumor and normal points (i.e.

human-in-the-loop training)

Figure 2. Assessment of trained tumor/normal masks. Examples of deep-learning generated tumor
mask, based on the expert-guided system in Figure 1.
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Figure 4. Block diagram of the automated adeno/squamous-cell NSCLC classifier. The classifier is
based on tumor patches (represented by 1D vector in logits layer of Inception-v3 Neural Net) of pre-
specified ranges of cell count used in tower of SVMs.
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Figure 5. Performance evaluation of the classifier. SVMs in the proposed system were trained using
tumor patches only, however area under the ROC curves of three runs of 150 test WSIs were used in
the the evaluation: (a) all valid patches of test WSIs were used. i.e. the entire WSI was considered
tumor, (b) tumor patches of test WSIs were used (based on the deep-learning framework in Figure 2),
and (C) adjacent normal patches alone which may provide additional insights into
tumorigenesis/invasion mechanisms upon further analysis.
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Table 1. Performance of the Nant classifier relative to state-of-the-art methods. Our algorithm
showed comparative or better performance while maintaining higher spatial resolution of tissues used
to give overall adeno/squamous call in test images.

Average

Area
number of

Patch size in

Test Set square under the  Accuracy

test patches

oer WS| ROC Curve

microns

Yu, K.-H. et al. (2016)

Train and test on TCGA diagnostic & frozen tissue WSIs 250 10 S )
Coudray, N. et al. (2018) 256 - 0.8825 -
Train on TCGA frozen tissue WSIs and test on diagnostic
WSls 1024 - 0.9180 -
Graham, S: et al. (2.0.18) - 64. WSIs from 2017 256 2,056 ) 31.00%
Computational Precision Medicine Challenge
Test using all tissues 100 14,906 0.8685 80.67%
Nant Classifier Test using tumor mask 100 6,722 0.9068  83.33%
Train and test on
TCGA diagnostic WSIs 1ot \sing adjacent normal mask 100 8,184 0.7917 74.67%

KEY FINDINGS

An automated NSCLC subtype classifier based on cell-count based tumor
patched was developed by training on an expert system and utilizing a

novel method of cell density mapping.

The proposed system achieved an area under the ROC Curve of 0.9068 in

test samples, corresponding to a classification accuracy of 83.33%.

The (heretofore excluded) adjacent normal regions were classified

correctly and almost as accurately as tumor regions (74.7%).

CONCLUSIONS

This fully-automated histopathology-based subtyping classifier generates maps of
regions-of-interest within WSIs, providing novel spatial information on tumor
organization. For example, our results on test data show tumor patches of 100
square microns in size with 60 to 100 cells distinguish LUAD from LUSC better
than other cell-density ranges. Moreover, this classifier reveals that adjacent
normal tissue may provide additional insights into tumorigenesis/invasion
mechanisms. This deep-learning system outperforms similar efforts using
CellProfiler features (Yu et al. 2016), and provides additional explanatory

information beyond systems with similar performance (Courdray et al. 2018).
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