

Identifying genomic sites with highly predictable DNA accessibility

AUTHORS

Kamil Wnuk¹, Jeremi Sudol¹, Shahrooz Rabizadeh¹, Christopher Szeto², Charles Vaske². ¹NantOmics LLC., Culver City, CA; ²NantOmics LLC., Santa Cruz, CA

BACKGROUND

transcriptional events promoting tumor growth

DNA accessibility, chromatin regulation, and genome methylation are all key drivers of

METHODS

Factorizing convolutional layers improved the baseline model on Basset dataset

Test metric on Basset dataset	ROC AUC	PR AUC
Basset model	0.895	0.561
Ours (no RNA-seq)	0.910	0.605

- Let the neural net implicitly handle tissue type: add RNA-seq signature as input • we learn $p(a|d,r) = \sum_{i}^{B} p(a|d,b_{i})p(b_{i}|r)$
- L1000 genes from Library of Integrated Network-based Cellular Signatures (LINCS)
- New data: 74 unique tissue types from ENCODE; matched RNA-seq, DNase-seq

Basset model [1] learns $p(a|d,b_i)$

Based on an image by Darryl Leja (NHGRI), Ian Dunham (EBI), Michael Pazin (NHGRI)

- DNA-based prediction tasks have all been cell/tissue type specific • Basset [1] predicts accessibility given DNA & discrete tissue type: $p(a|d,b_i)$
- Cell or tissue type can be predicted from RNA-seq [3]: p(b|r) can be learned
- ENCODE [2] has local structure w.r.t. tissue type in RNA-seq and DNase-seq data

Figure 1. Promoter and promoter flank (P&F) accessibility is highly predictable

 Table 1. P&F predictability is retained even
when holding out similar tissue types

Dataset Partition	Held out tissue types		Held out samples with tissue type overlap		
Test metric	ROC AUC	PR AUC	ROC AUC	PR AUC	
Over all sites	0.897	0.621	0.913	0.725	
Promoter & Flank	0.876	0.839	0.914	0.911	

-0.6

CONCLUSIONS

- Adding an RNA-seq signature as input allows the model to figure out how tissue type/state affect DNA-sequence-based prediction tasks
 - No need to train one model per type or multitask outputs
 - Applies to new types not seen in training
- At promoter and promoter flank regions of the genome it is possible to predict DNA accessibility to much higher precision than any prior results
- Performance is independent of whether sites overlap with L1000 genes
- Some tissues are more challenging, but not purely due to distance from training
 - Most difficult test tissue, G401, is most different from training examples
 - However, astrocytes are more different than prostate or spleen
- INDEL mutations cause more accessibility predictions to flip than SNPs Clustering cohorts based on accessibility gives distinct assignment from RNA-seq Distinct differentially expressed pathways Offers a distinct perspective from analysis of RNA-seq alone

Figure 2. Tissue-type affects accessibility prediction accuracy

 Table 2. Prediction performance is less
correlated with test sample similarity to training data at P&F sites than when evaluated over all potentially accessible sites

accessible

Figure 3. P&F sites form distinct clusters

	corr.	p-value	rho	p-value
Overall	-0.7472	1.77e-05	-0.7080	7.52e-05
P&F	-0.6795	1.87e-04	-0.5417	5.16e-03

PR AUC vs. min RNA-seq dist. to training

	100 C C C C C C C C C C C C C C C C C C			
faci	ultative	in		
	- 1			
	*			
	•			

Site cluster property	Number of TCGA P&F sites
Constitutively not accessible	40,823
Constitutively accessible	10,878
Facultative	52,891

REFERENCES

- 1. D. R. Kelley, J. Snoek, J. L. Rinn, "Basset: Learning the regulatory code of the accessible genome with deep convolutional neural networks," Genome Research, 2016, 26(7)
- 2. ENCODE Project Consortium, "An integrated encyclopedia of DNA elements in the human genome," Nature, 2012, 489(7414)
- 3. A. Conesa, et al. "A survey of best practices for RNA-seq data analysis," Genome
- Biology, 2013, 17(1)
- https://www.biorxiv.org/content/early/2017/12/05/229385 4.
- Corresponding author: kwnuk@nantomics.com

Copies of this poster obtained through Quick Response (QR) Code are for personal use only and may not be reproduced without permission from ASHG® and the author of this poster.