Abstract # 231495

Seventeen percent of NGS 50 gene panel variants are not expressed in RNAseq

CONTRIBUTING RESEARCHERS

Razelle Kurzrock¹, Rahul Parulkar², Timothy Joseph Yeatman³, Wafik S. El-Deiry⁴, Timothy J. Pluard⁵, Chad Garner⁶, Sandeep K. Reddy⁷

¹Moores Cancer Center, La Jolla, CA; ²NantOmics LLC., Santa Cruz, CA; ³Gibbs Cancer Center, Philadelphia, PA; ⁵St. Luke's Cancer Institute, Kansas City, MO; ⁶NantOmics LLC., Culver City, CA; ⁷NantHealth LLC., Culver City, CA; ³Gibbs Cancer Center, Philadelphia, PA; ⁵St. Luke's Cancer Center

BACKGROUND

- Tumor-only sequencing analysis to identify somatic variants increases the risk of mistakenly identifying germline mutations as somatically-derived cancer mutations
- Simultaneous bioinformatics analysis of both the normal germline and tumor genome along with RNA analysis is necessary for accurate identification of molecular targets for cancer therapy.
- Standard NGS panels evaluate DNA only. RNAseq has shown that molecular targets identified by NGS panels are not universally expressed.
- The objective of this study was to compare the accuracy and precision of tumor somatic calling with a 50 gene commonly used hotspot panel, analyzing tumor tissue alone versus analyzing tumor DNA simultaneously with normal germline DNA and tumor RNA.
- Furthermore, we hypothesized that heterogeneous epigenomic factors may lead to low or absent RNA expression. We sought to determine the frequency of **non-expressed variants** that would be tested by a standard NGS panel.

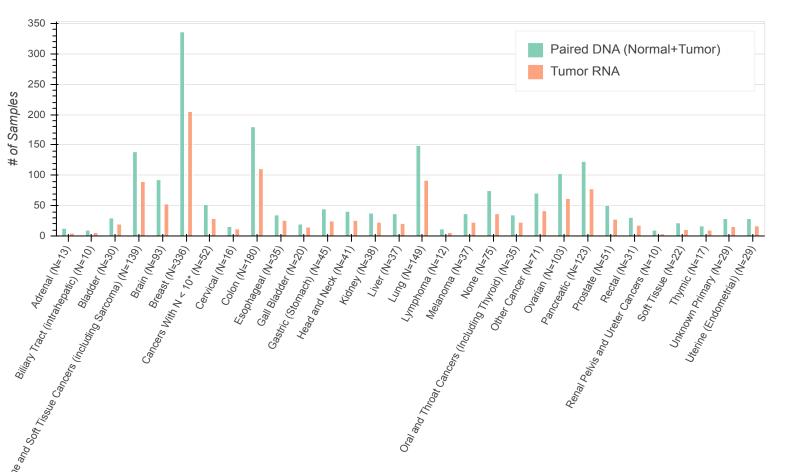
METHODS

- This study included 1879 cancer patients with 42 cancer types with either whole genome sequencing or whole exome sequencing of both tumor and normal genomes.
- True positive (true somatic variants) and false positive (true germline variants estimated to be somatic variants) rates were measured for missense and **nonsense** single nucleotide variants (SNVs) in a 50 gene panel.
- A in-silico 50 gene panel (Ampliseq HotSpot V2) was constructed as a reference comparison: ABL1, EGFR, GNAS, KRAS, PTPN11, AKT1, ERBB2, GNAQ, MET, RB1, ALK, ERBB4, HNF1A, MLH1, RET, APC, EZH2, HRAS, MPL, SMAD4, ATM, FBXW7, IDH1, NOTCH1, SMARCB1, BRAF, FGFR1, JAK2, NPM1, SMO, CDH1, FGFR2, JAK3, NRAS, SRC, CDKN2A, FGFR3, IDH2, PDGFRA, STK11, CSF1R, FLT3, KDR, PIK3CA, TP53, CTNNB1, GNA11, KIT, PTEN, VHL.
- RNA sequencing was available for 1134/1879 (60%) patients.
- Sequence alignment and SNV variant calling was performed using wellestablished and published bioinformatics methods (References).
- Post alignment statistics for RNA were confirmed to contain at least 10x coverage on average of 300 key genes known to have a role in cancer.

METHODS REFERENCES

Sanborn JZ, Chung J, Putlem E, Wang NJ, Kakavand H, Wilmon JS, Butler T, Thompson JF, Mann GJ, Haydu LE, etal: Phylogenetic analyses of melanoma reveal complex patterns of metasta fic dissemination. Proc Natl Acad Sci U S A 2015, 112:1095-1100 Schulman JM, Oh DH, Sanborn JZ, Pincus L, McCalmont TH, Cho RJ: Multipk Hereditary Infundibulocystic Basal Cell Carcinoma Syndrome Associated With a Germine SUFU Mutation. JAMA Dematol 2016, 152:323-327. rrido M, Botton T, Talevich E, Yeh I, Sanborn JZ, Chung J, Wang NJ, Kakavand H, Mann GJ, et al.: Exome sequencing of desmoplastic melanoma identifies recurrent NFKBIE promoter mutations and diverse activating mutations in the MAPK pathway. Nat Genet 2015, 47:1194-1199 R: Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25:1754-1760. his log on the institution action action action action action action and action acti

4, Sabberg SL: Ultrafast and memory-efficient alignment of snort Diversequences of the memory and the state of the state o Wutation detection in patients with a dvanced cancer by universal sequencing of cancer-related genes in tumor and normal DNA vs guideline based germline testing. JAMA 2017, 318 82 : Personalized genomic analyses for cancer mutation discovery and interpretation. Sci Transl Med 2015, 72 83

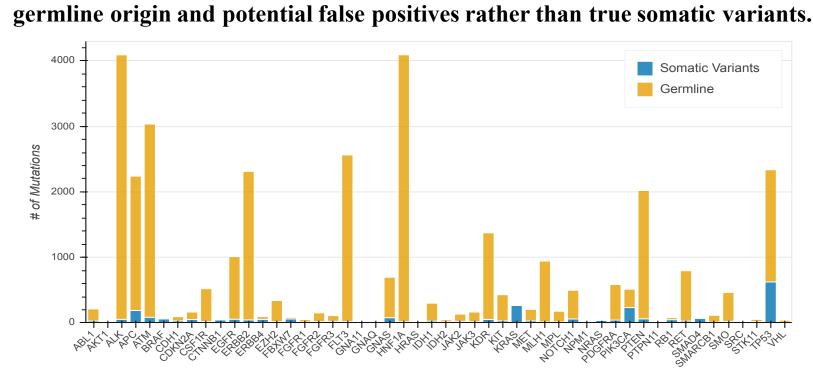

© 2018 NANTOMICS, LLC.

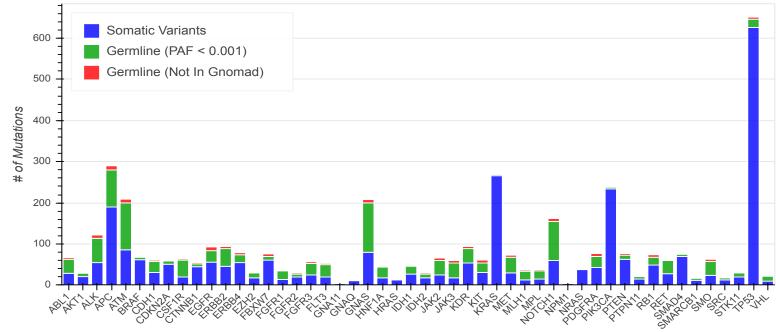
RESULTS

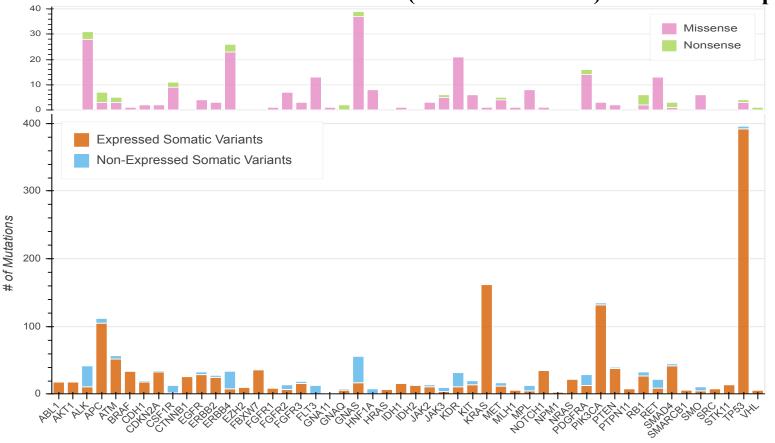
Table 1. Demographics overview for cohort (N=1879).

Cancer Type	# Patients	# Male	# Female	Min. Age	Max Age	Median Age
Breast	336	2	327	20	86	56
Colon	180	83	93	17	87	58
Lung	149	67	78	9	90	65
one and Soft Tissue Cancers (including						
Sarcoma)	139	72	62	0	82	49
Pancreatic	123	69	48	3	87	63
Ovarian	103	0	96	25	86	58
Brain	93	52	37	0	79	49
Cancer Type Unknown	75	38	29	6	91	59
Other Cancer	71	39	31	1	83	62
Cancers With N < 10*	52	29	20	0	87	65.5
Prostate	51	48	0	40	83	65
Gastric (Stomach)	45	26	19	15	85	61
Head and Neck	41	31	8	19	86	64
Kidney	38	25	11	0	72	62
Liver	37	25	11	9	77	63
Melanoma	37	24	12	29	87	64
Oral and Throat Cancers (Including						
Thyroid)	35	21	13	42	83	63
Esophageal	35	24	10	46	86	64
Rectal	31	21	10	28	80	57
Bladder	30	17	12	49	92	72
Unknown Primary	29	11	18	29	83	57
Uterine (Endometrial)	29	0	28	34	89	66
Soft Tissue	22	15	7	2	80	18
Gall Bladder	20	7	13	39	87	65.5
Thymic	17	9	8	24	73	59
Cervical	16	0	16	27	75	49
Adrenal	13	8	4	1	74	48
Lymphoma	12	8	3	18	81	66
Renal Pelvis and Ureter Cancers	10	5	5	8	71	42
Biliary Tract (intrahepatic)	10	5	4	46	78	61

Fig 1. Analytes sequenced per cancer type.




**Cancer Types Include: Skin (Non-Melanoma), Mesothelioma, Testicular, Bile Duct (Extrahepatic),* Anal, Ampulla of Vater, Leukemia, Vaginal, Myeloma, Small Intestine, Vulvar, Penile, Urethral


• Sequencing the tumor genome identifies all of the SNVs of inherited germline origin and tumor somatic origin, and the large majority are of germline origin. (Fig. 2) • Population allele frequencies and other parameters can be used to filter SNV data and estimate somatic versus germline origin, although not accurately enough for clinical use, as shown recently by others. (Fig. 3)

• All but 1 true germline mutation is identified in < 1% of samples. (Fig. 3)

Fig 2. 92% of SNVs identified from sequencing tumor genomes alone were of

Ampliseq Gene Panel

Ampliseg Gene Panel

Fig 3. Filtering all SNVs using gnomAD with reported population allele frequencies >= 0.001 OR whether the variant existed at all still resulted in a false positive rate of 34%.

Ampliseg Gene Panel

Fig 4. RNA analysis showed that 15% of somatic SNVs (missense/nonsense) and 17% of all somatic SNVs (missense/nonsense/synonymous) were not expressed. 23% of patients had at least one somatic variant (misense/nonsense) that was not expressed.

Table 2. Somatic SNVs in gene panel per cancer type, sorted by their respective expression percentages.

Cancer Type	# Mutations in Panel	Unique Mutations in Panel	Expressed Mutations in Panel	% Expressed	Average Non-Synonymous Load
Melanoma	76	70	44	58%	546.54
Skin (Non-Melanoma)	67	67	45	67%	2660.33
Gall Bladder	13	11	9	69%	77.45
Lymphoma	4	4	3	75%	134.92
Kidney	12	12	9	75%	344.61
Leukemia	4	4	3	75%	115.75
Soft Tissue	8	6	6	75%	116.45
Head and Neck	28	28	22	79%	120.71
Cancer Type Unknown	149	145	117	79%	437.24
Biliary Tract (intrahepatic)	5	5	4	80%	71.9
Vaginal	5	5	4	80%	498.33
Thymic	5	5	4	80%	155.82
Bile Duct (extrahepatic)	5	5	4	80%	59.6
Esophageal	45	40	37	82%	169.6
Mesothelioma	6	6	5	83%	52.25
Prostate	19	19	16	84%	95.18
Bone and Soft Tissue Cancers (including Sarcoma)	56	54	47	84%	123.81
Liver	19	19	16	84%	160.22
Other Cancer	47	45	40	85%	105.82
Bladder	47 48	42	40	85%	235.7
Unknown Primary	13	42	11	85%	160
,	168	13	11	85%	261.6
Lung Anal	7	7	6	86%	250.4
Colon	332	230	289	87%	230.4
Oral and Throat Cancers (Including Thyroid)	40	38	35	88%	146.31
Uterine (Endometrial)	28	26	25	89%	180.76
Pancreatic	118	63	105	89%	70.54
Gastric (Stomach)	29	28	26	90%	136.58
Breast	225	154	202	90%	124.83
Ovarian	52	46	48	92%	100.72
Brain	59	46	56	95%	90.61
Rectal	43	39	41	95%	241.29
Cervical	26	24	25	96%	229.38
Adrenal	2	2	2	100%	85.62
Small Intestine	2	2	2	100%	241
Testicular	1	1	1	100%	393.17
Renal Pelvis and Ureter Cancers	2	2	2	100%	125.8
Myeloma	1	1	1	100%	146
Penile	4	4	4	100%	476
Ampulla of Vater	2	2	2	100%	108

Across 39 tumor types, the range of expression was 58% (Melanoma)-100% (Penile). Urethral/Vulvar cancer types are absent in this table, patients in those cancer types had no mutations in the gene set. Non-Synonymous Load refers to the raw counts of non-synonymous mutations.

CONCLUSION

- All patients have at least 1 germline SNV (30955 total) in the panel.
- 1227/1879 (65%) of patients have at least 1 somatic SNV (308721 total) in the panel.
- 741/1135 (65%) of paired DNA/RNA patients have at least 1 somatic SNV (198844 total) in the panel. This results in 1775 unique SNVs amongst paired DNA/RNA patients.
- 1502/1775 (84.6%) were expressed in the RNAseq.
- 273/351 (76.3%) of the non-expressed SNVs are missense/nonsense.
- Simultaneous sequencing and bioinformatics analysis of DNA, both the normal germline genome and tumor genome, is necessary for accurate identification of molecular targets.
- Analysis of tumor genome alone results in false-positive somatic variant calls.
- Higher precision is achieved with simultaneous tumor-normal DNA and tumor RNA sequencing analysis.
- The lack of RNA expression may contribute to less than expected clinical benefit with molecularly targeted therapies.
- Since the distribution is non-uniform, identification of these genes can yield improved testing algorithms and treatment strategies.

CONTACT

Corresponding Author: rahul.parulkar@nantomics.com

NantOmics

Copies of this poster obtained through Ouick Response (OR) Code are for personal use only a may not be reproduced withou mission from ASCO ® and th author of this poster.

• Upon adding synonymous mutations, 1673/2031 (82.3%) were expressed in the RNAseq.