

Genomic Landscape of Diverse Rare Tumors: Next-Generation Sequencing with Paired DNA and RNA analysis

variants

-number

Copy

expression

8

Ryosuke Okamura¹, Shumei Kato¹, Rahul Parulkar², Christopher Szeto², Sandeep K. Reddy², Razelle Kurzrock¹

¹Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA, USA ² Medical Affairs and Clinical Development, NantHealth, Culver City, CA, USA.

BACKGROUND

> In the U.S., rare tumors are defined as those with an incidence of fewer than 15 cases per 100,000 per year. Among rare tumors, cancers with prevalence <2000 or incidence of fewer than 2 cases per 100,000 are referred to as ultra-rare tumors.

 \triangleright Rare tumors are infrequent by definition. However, when all subtypes of rare cancers are combined, they account for ~25% of adult malignancies. Hence the overall burden of rare tumors is significant.

> Clinical management of rare malignancies can be challenging due to the lack of information that can lead to difficulty making the diagnosis as well as a shortage of therapeutic options, both Food Drug Administration approved and and experimental on clinical trials.

 \succ Thus patients with rare cancers tend to lack therapeutic approaches. Conceivably due to these limitations, patients with rare tumors are reported to have lower 5-year overall survival when compared to those with common tumors (47% versus 66%).

 \succ Based on the unmet need for novel treatments for patients with rare cancers, genomic landscape of diverse rare tumors were investigated with nextgeneration sequencing. When available, paired DNA and RNA were sequenced.

References

METHODS

- > 380 patients with diverse rare tumors who underwent nextgeneration sequencing were evaluated (whole genome sequencing [N=274], whole exome sequencing [106]). Among them, 250 patients had paired DNA and RNA analysis.
- > De-identified dataset with rare tumor diagnosis were collected from NantHealth database.
- Somatic-specific variants were identified using paired tumor/normal comprehensive NGS. Analysis was focused on the 200 most frequently mutated genes in this cohort. Deep whole transcriptomic sequencing (RNA-Seq) (~200x106 reads per tumor) was used to determine expression of observed somatic variants.

RESULTS

Patient characteristics (N=380)

Capaar Turaa	Number of	Fraguanay
Cancer Type	patients	Frequency
Bone and Soft Tissue Sarcoma	148	38.9%
Oral and Throat Cancers		
(Including Thyroid)	33	8.7%
Gall Bladder Cancer	32	8.4%
Cancer of Unknown Primary	28	7.4%
Thymic carcinoma	15	3.9%
Cervical cancer	15	3.9%
Adrenal carcinoma	9	2.4%
Skin cancer (Non-Melanoma)	9	2.4%
Mesothelioma	8	2.1%

Included in the table with N>5.

Testicular (N=4), Anal (N=4), Ampulla of Vater (N=3), Penile (N=1), Vaginal (N=2), Vulvar (N=2), Small Intestine (N=2), Urethral (N=1), Renal Pelvis and Ureter Cancers (N=1)

N=63 had unspecified cancer diagnosis

Comprehensive genomic analysis is feasible among patients with rare tumors.

- > Alterations were commonly seen in TP53, KMT2C and PIK3CA.
- Most patients had unique patterns of genomic alterations.

transcribed.

20

> Further studies investigating the efficacy of an individualized precision therapy approach in patients with rare neoplasms using paired DNA/RNA analysis is warranted.

Abstract No: 12114

RESULTS

CONCLUSIONS

> Not all the genomic alterations observed in the level of DNA were

smkato@ucsd.edu

Gatta G et al, Rare cancers are not so rare: The rare cancer burden in europe. Eur J Cancer 2011;47:2493-2511

Greenlee RT et al, The occurrence of rare cancers in u.S. Adults, 1995-2004. Public Health Rep 2010;125:28-43.

Munoz J and Kurzrock R. Targeted therapy in rare cancers--adopting the orphans. Nat Rev Clin Oncol 2012:9:631-642.

Tamaki T et al. The burden of rare cancer in japan: Application of the rarecare definition. Cancel Epidemiol 2014:38:490-495

Beck M. Rare and ultra rare diseases. Journal of Developing Drugs 2012;2012

Hughes DA et al, Drugs for exceptionally rare diseases: Do they deserve special status for fundina? QJM 2005:98:829-836.

Kato et al, Rare Tumor Clinic: The University of California San Diego Moores Cancer Center Experience with a Precision Therapy Approach. Oncologist. 2018;23(2):171-178