Abstract #2575

The NantOmics Pharmacogenomics Test: a panomic approach to pharmacogenomics

screening.

CONTRIBUTING RESEARCHERS

Camille Schwartz¹, John Little¹, Charles J Vaske¹, Christopher W Szeto¹, Stephen C Benz¹, Patrick Soon-Shiong^{2,3}, Shahrooz Rabizadeh², J Zachary Sanborn¹ ¹NantOmics LLC., Santa Cruz, CA; ²NantOmics LLC., Culver City, CA; ³CSS Institute for Molecular Medicine, Culver City, CA

BACKGROUND

- Pharmacogenomics can be used to tailor therapies to patient genotypes to reduce adverse drug events, improve outcomes, and reduce treatment costs.
- Many oncology drugs have pharmacogenomics warnings on their FDA labels, yet pharmacogenomics screening is not routinely employed in clinical practice.
- The increased accessibility of next generation sequencing (NGS) enables introduction of comprehensive pharmacogenomics screening to oncology patients.
- We screen for germline and somatic variants to determine how an oncology patient will respond to potential therapies in a clinical setting.

METHODS

- Whole genome and whole exome sequencing data from FFPE tumors and matched normal samples of 1,879 CLIA patients.
- Clinical panel comprised of 31 pharmacogenomic markers related to 16 oncology drugs from FDA labels and CPIC guidelines.
- Validation was performed on a cohort of patients previously genotyped by an independent CLIA-validated PCR-based panel and the CDC genetic testing reference materials (GeT-RM).

Drugs	Gene	Clinical Implications
Tamoxifen	CYP2D6	Lower endoxifen concentration, increased likelihood of recurrence
Lapatinib	HLA-DRB1 HLA-DQA1	Increased risk of hepatotoxicity
Fluorouracil, Capecitabine, Tegafur	DPYD	Increased risk of severe or life threatening adverse events
Belinostat, Irinotecan, Nilotinib, Pazopanib	UGT1A1	Increased risk of toxicities, neutropenia, hyperbilirubinemia, hyperbilirubinemia (respectively)
Rasburicase, Dabrafenib	G6PD	Increased risk of hemolytic anemia
Tacrolimus	CYP3A5	Normal metabolizers may fail to reach target dose
Mercaptopurine	NUDT15	Increased risk of myelotoxicity (leukopenia or neutropenia)
Azathioprine, Mercaptopurine, Thioguanine	TPMT	Increased risk of myelosupression and potentially fatal toxicities
Eltrombopag Olamine	F5	Increased risk of thromboembolism

RESULTS

Observed allele frequencies correspond to known population frequencies

Gene	Allele	Frequency	Population Frequency
CYP3A5	*3	85.74%	85-95%
CYP3A5	*6	0.43%	1.19%
CYP2D6	*10	4.23%	[2.5-42.4]%
TPMT	*3A	5.69%	4.50%
TPMT	*3B	5.53%	2.75%
TPMT	*3C	7.08%	3.67%
TPMT	*2	0.16%	0.14%
F5	rs6025	2.13%	2.15%
DPYD	*2A	0.48%	0.58%
DPYD	rs67376798	0.48%	0.29%
G6PD	Mediterranean	1.22%	0.24%
G6PD	A-	1.12%	1.13%
NUDT15	*3	1.44%	2.62%
NUDT15	*4	0.08%	0.24%

Pharmacogenomic variants are common across many cancer types

Cancer Type	# Patients	# With At Least One Variant (%)	# With Potentially Treatment-Altering Variant(s) (%)
Adrenal	13	13 (100%)	2 (15.4%)
Bladder	30	30 (100%)	3 (10%)
Brain	93	91 (97.8%)	7 (7.5%)
Breast	336	317 (94.3%)	22 (6.5%)
Cervical	16	16 (100%)	2 (12.5%)
GI Tract	573	556 (97%)	41 (7.2%)
Kidney	38	37 (97.3%)	4 (10.5%)
Leukemia	4	4 (100%)	0 (0%)
Lung	149	143 (95.9%)	14 (9.4%)
Lymphoma	12	12 (100%)	1 (8.3%)
Melanoma	37	36 (97.3%)	1 (2.7%)
Mesothelioma	8	8 (100%)	3 (37.5%)
Other Cancer	153	148 (96.7%)	6 (3.9%)
Ovarian	103	102 (99%)	8 (7.8%)
Prostate	51	49 (96.1%)	3 (5.8%)
Renal Pelvis and Ureter	10	9 (90%)	0 (0%)
Sarcomas (including	161	154 (95.6%)	17 (10 5%)
Skin (Non-Melanoma)	0	(100%)	1 (11 1%)
Testicular	6	6 (100%)	1 (16.7%)
Thymic	17	17 (100%)	1 (5.8%)
Unknown Primary	29	28 (96.5%)	1 (3.4%)
Uterine (Endometrial)	29	27 (93.1%)	1 (3.4%)
Vulvar	2	2 (100%)	0 (0%)
Total	1879	1814	139
Percent		96.54%	7.40%

The TPMT*3A allele is made up of two SNPs (rs1142345 and rs1800460), which are separately known as use RNA allele fraction to determine whether the variants are on the same copy of the gene (*3A), or separate (*3B/*3C). Each color represents a patient possessing both variants at the same RNA allele fraction, indicating *3A

CYP2D6*10 is a common reduced-function haplotype related to tamoxifeninduced toxicities

Candidates for Tamoxifen therapy harboring CYP2D6*10

Hormone Receptor Status	*10 het
ER+/PR+	10

Our test detects CYP2D6*10 with a sensitivity of 95.3% and specificity of 99%. In unselected breast cancer cases (N=165) 78% were Tamoxifen candidates (i.e. ER/PR positive by IHC). 118 of the 128 HR positive cases were tested for CYP2D6 haplotype. 8 patients (6.78%) had at least one CYP2D6*10 haplotype and were potentially affected by Tamoxifeninduced toxicities.

Study	Finding
Xu, Y. et al. Ann Oncol (2008).	Women with the CYP2D6*10/*10 geno significantly worse disease free survival p= 0.04)
Schroth, W. et al. J Clin Oncol (2007)	Tamoxifen treated patients with CYP2De shorter relapse-free periods (HR = 2.24, = 1.89, p=0.02) compared to carriers of
Teh, LK. et al. AAPS J (2012).	Patients carrying CYP2D6*10/*10 have recurrence and metastasis than patient 13.14, p= 0.004)

type treated with Tamoxifen had than 1/10 or 1/10 genotype (HR = 4.7,

6 *4, *5, *10, *41 had more recurrence and p=0.02) and worse event free survival (HR functional alleles.

showed higher risks of developing ts with *1/*10 and *1/*1 genotypes (OR =

- Most patients (>96%) had at least one variant screened for in our pharmacogenomics panel covering 16 commonly used drugs including 5-FU, Lapatinib, and Tamoxifen.
- Of those, a surprising percentage had variants with the potential to change treatment due to severe or life-threatening implications.
- CYP2D6*10 haplotype was found in nearly 7% of patients with HR+ breast cancer.
- Our results underscore the need for pharmacogenomics screening for all patients undergoing cancer treatment.

ACKNOWLEDGEMENTS

We acknowledge Justin Golovato and the NantOmics laboratory facility in Culver City, CA

CONTACT

Corresponding author: camille.schwartz@nantomics.com

Copies of this poster obtained through Quick Response (QR) Code are for personal use only and may not be reproduced without permission from ASCO[®] and the author of this poster.

REFERENCES

1.CPIC Guidelines: cpicpgx.org

2.FDA labels: https://www.accessdata.fda.gov/scripts/cder/daf/ 3.gnomAD: http://gnomad.broadinstitute.org