# Quantification of FGFR protein expression in solid tumors by targeted mass spectrometry and correlation with FGFR gene amplification status

Andrew Chambers<sup>1</sup>, Sarit Schwartz<sup>1</sup>, Yuan Tian<sup>1</sup>, Roberta Fasani<sup>2</sup>, Maria Diaz Delgado<sup>2</sup>, Cinta Hierro<sup>2</sup>, Jordi Rodon<sup>2</sup>, Shankar Sellappan<sup>1</sup>, Fabiola Cecchi<sup>1</sup>, Steve Benz<sup>3</sup>, Todd Hembrough<sup>1</sup>, Paolo Nuciforo<sup>2</sup> <sup>1</sup>NantOmics, Rockville, MD, USA; <sup>2</sup>Vall d'Hebron Institute of Oncology, Barcelona, Spain; <sup>3</sup>NantOmics, Culver City, CA, USA

## Background

- Fibroblast growth factor receptors (FGFR) have been reported as gene amplified or protein overexpressed in multiple cancers, including lung, breast and gastric.<sup>1-3</sup>
- However, FGFR protein inhibitor therapies have shown only modest efficacy in patients with FGFR gene amplification as determined by fluorescence in situ hybridization (FISH).<sup>4-5</sup>
- Recent reports suggest direct measurement of FGFR proteins may be necessary to help predict treatment efficacy of FGFR inhibitor therapies.<sup>5-6</sup>
- We therefore developed a quantitative LC-MS assay for FGFR proteins using SRM and stable isotope-labeled standards.
- Expression of FGFR proteins by LC-MS was compared with FGFR gene amplification status by FISH (n=15) and by RNA-seq (n=7).

## Methods

- Malignant cells were identified in formalin-fixed, paraffinembedded (FFPE) clinical tumor tissues by a board-certified pathologist and isolated by laser microdissection.
- Proteins were solubilized and digested with trypsin for subsequent LC-MS analysis using SRM (Waters nanoAcquity UPLC – Thermo Quantiva QQQ).
- Stable isotope-labeled standards and response curves enabled analytical characterization in a surrogate matrix and the assay was qualified in FFPE tissues.
- FGFR gene amplification status by FISH (FGFR/CEP ratio >2.2) and by RNA-seq was determined in a subset of matching tumor tissues.



## Results

### Table 1. Overview of the LC-MS assay for FGFR proteins

| LOD     | LLOQ     | ULOQ        | Linearity<br>(R <sup>2</sup> ) | Intra-Assay<br>Precision | Inter-Machine<br>Precision | Maximum<br>Carry-Over |
|---------|----------|-------------|--------------------------------|--------------------------|----------------------------|-----------------------|
| 75 amol | 100 amol | 25,000 amol | 0.9999                         | < 15%                    | < 15%                      | 0.21%                 |

Figure 1. LC-MS response curve for FGFR proteins Varying amounts of light peptide were spiked in a complex background with a constant amount of heavy peptide (5 fmol/ $\mu$ g) to build the standard curve (n=5).



### Table 2. LC-MS intra-assay precision in FFPE tissue

| FGFR Spike (amol/µg) | LC-MS System 1 CV (%) | LC-MS System 2 CV (%) |  |
|----------------------|-----------------------|-----------------------|--|
| 200                  | 13.0                  | 6.9                   |  |
| 300                  | 10.4                  | 8.0                   |  |
| 400                  | 1.6                   | 4.8                   |  |
| 500                  | 4.0                   | 5.7                   |  |
| 600                  | 4.6                   | 2.4                   |  |
| 800                  | 14.5                  | 5.9                   |  |
| 5,000                | 6.4                   | 3.5                   |  |
| 10,000               | 3.3                   | 0.8                   |  |

### **Figure 2. LC-MS inter-machine precision in FFPE tissue** Ten FFPE tissue samples were spiked with different

concentrations of the light peptide. Three injections of each sample were analyzed on 2 different LC-MS systems.



### Table 3. Matching samples for LC-MS, FISH and RNA-seq

| Sample ID | Tissue Type |
|-----------|-------------|
| RTZ-50    | Breast      |
| RTZ-51    | Breast      |
| RTZ-52    | Breast      |
| RTZ-53    | Breast      |
| RTZ-54    | Breast      |
| RTZ-55    | Gastric     |
| RTZ-56    | Breast      |
| RTZ-57    | Lung        |

| Sample ID | Tissue Type |
|-----------|-------------|
| RTZ-58    | Breast      |
| RTZ-59    | Breast      |
| RTZ-60    | Endometrium |
| RTZ-61    | Lung        |
| RTZ-62    | Breast      |
| RTZ-63    | Breast      |
| RTZ-64    | Breast      |
|           | •           |

### Figure 3. Comparison of FGFR by LC-MS and FISH

FGFR status was assessed by LC-MS and FISH in matching FFPE tumor samples (n=15). Of 12 gene-amplified samples, 3 had no detectable FGFR proteins. ND = Not Detected.





| <b>Figure 4. Comparison of FGFR by LC-MS and RNA-seq</b><br>FGFR status by LC-MS and by RNA-seq was in agreement for<br>5 of the 7 clinical samples available for comparison. |          |                                      |          |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------|----------|--|--|--|
| FGFR Status by LC-MS                                                                                                                                                          |          |                                      |          |  |  |  |
|                                                                                                                                                                               |          | Positive                             | Negative |  |  |  |
| by RNA-seq                                                                                                                                                                    | Positive | RTZ-50<br>RTZ-61<br>RTZ-62<br>RTZ-64 | RTZ-63   |  |  |  |
| <b>FGFR Status</b><br>Negative                                                                                                                                                | RTZ-53   | RTZ-52                               |          |  |  |  |

## Conclusions

- We developed a quantitative LC-MS assay for FGFR proteins in FFPE tissue samples with high linearity and precision across the entire dynamic range.
- Three of 12 clinical samples with FGFR gene amplification by FISH had no detectable FGFR proteins as measured by LC-MS. FGFR status by LC-MS and RNA-seq was in agreement in 5 of 7 samples.
- These findings are important because patients whose tumors express low or undetectable FGFR protein are not likely to respond to therapy with FGFR protein inhibitors.

## References

- 1. Ahmad et al. 2012. Biochim. Biophys. Acta, 1823, 850.
- 2. Courjal et al. 1997, Cancer Res., 57, 4360.
- 3. Park et al. 2010, Cancer Res., 70, 660.
- 4. Paik et al. 2014, ASCO Proceedings. Abstract 8035.
- 5. Nogova et al. 2014, ASCO Proceedings. Abstract 8034. 🚟 🕤 😫
- 6. Weeden et al. 2015, Cell Death Discov., 1, 15049.

