
●

ad
ju

st
ed

 d
as

at
in

ib
se

ns
iti

vi
ty

 s
co

re
−3

0
−2

0
−1

0
0

10
20

30

ne
rv

ou
s_

sy
st

em lu
ng

di
ge

st
ive

_s
ys

te
m

ur
og

en
ita

l_
sy

st
em sk

in

ki
dn

ey

br
ea

st

th
yr

oi
d

bl
oo

d

bo
ne

ae
ro

_d
ig

es
tiv

e_
tra

ct

pa
nc

re
as

so
ft_

tis
su

e

76
36 / 27
77.8%

123
49 / 63
77.6%

68
14 / 33
85.7%

65
12 / 43
91.7%

40
11 / 18
81.8%

21
11 / 10
90.9%

39
10 / 23

70%

11
2 / 9
100%

102
87 / 4
63.2%

29
12 / 10
91.7%

44
15 / 26
86.7%

15
1 / 12
100%

15
8 / 6
100%

ba
ck

gr
ou

nd
di

st
rib

ut
io

n
si

gn
ifi

ca
nt

ly
se

ns
iti

ve
si

gn
ifi

ca
nt

ly
re

si
st

an
t

nervous_system
sensitivity enrichment
p=0.00481 (chi−sq.)

total
significant (labeled / unlabeled)

prediction accuracy

summary
654

268 / 284
76.5%

● ●no response data correct prediction incorrect prediction

●

ad
ju

st
ed

 d
as

at
in

ib
se

ns
iti

vi
ty

 s
co

re
−2

0
−1

0
0

10
20

G
BM LG

G

LU
AD

LU
SC

C
O

AD

R
EA

D

BL
C

A

U
C

EC

SK
C

M

KI
R

C

BR
C

A−
D

BR
C

A−
L

TH
C

A

135
33
37

135
1

112

365
125
75

383
134
105

212
6

176

88
1
74

118
27
55

295
7

169

48
5
31

323
293

9

740
21
574

163
8

104

417
210
21

ba
ck

gr
ou

nd
di

st
rib

ut
io

n
si

gn
ifi

ca
nt

ly
se

ns
iti

ve
si

gn
ifi

ca
nt

ly
re

si
st

an
t

total
significantly sensitive
significantly resistant

summary
417
871
1542

Building patient-specific predictors of drug responses from cell line genomics 
Christopher W. Szeto Ph.D., Stephen C. Benz Ph.D., Charles J. Vaske Ph.D.,  Shahrooz Rabizadeh Ph.D., Patrick Soon-Shiong M.D.

Abstract Machine Learning Pipeline

© 2015 NantOmics. All Rights Reserved.

Results 

References 

Poster #44

�

��������������������

��������������������������� ����

Types Number
Genomic datasets CCLE expression

CCLE copynumber

CCLE expression paradigm

CCLE copynumber paradigm

CCLE expression & copynumber paradigm

sanger expression

sanger copynumber

sanger expression paradigm

sanger copynumber paradigm

sanger_expression & copynumber paradigm

10
(8320 samples)

Drugs 17-AAG

681640

A-443654

A-770041

…

WZ-1-84

XMD8-85

Z-LLNle-CHO

ZM-447439

139

Classifiers Linear kernel SVM

First order polynomial kernel SVM

Second order polynomial kernel SVM

Ridge regression

Lasso

Elastic net

Sequential minimal optimization

Random forest

J48 trees

Naive bayes

JRip rules

HyperPipes

NMFpredictor

13

Feature selections Four levels of variance filters 4
29,352 fully trained drug response models built
146,760 additional evaluation models built (5-fold CV)
176,112 total models analyzed

Learning pathway activities

Building response predictors

Making robust predictions
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Genomic-scale data are collected from individual cancer samples via microarray or sequencing technology. Several independent 
assays may be performed on the same samples; for example, both expression profiling and copy-number estimation.
These data are integrated in a factor-graph-based model of the central dogma, and linked together into networks of known pathways 
(PARADIGM). The most likely state for these networks given the -omics data evidence is estimated, and reported as inferred 
pathway activities.

topmodel code can access data stored in various formats including flatfiles, databases, or from the cloud. 
Data and metadata undergo multithreaded preprocessing, then split into training and validation folds. The data is then written to the 
file formats required by individual machine-learning packages. 
Each classifier is trained on training data, and evaluated on validation data. This is performed on a cluster, increasing throughput 
enormously. In addition to the evaluation models, a fully-trained model is built upon the whole input dataset. 
Each algorithm and its parameters are evaluated for accuracy. Those evaluations are collected into a unified file format and stored in 
a database.
The database of predictors can be queried, and the models used to make predictions on novel datasets.

All datasets from one type (e.g. RNAseq expression) are queried from the topmodel database. One thousand randomly selected 
samples from across these datasets are independently permuted to create a randomized background dataset. The fully-trained top 
model is used to classify the randomized dataset. The mean and standard deviation for the randomized dataset is recorded for use 
as a null model.
On novel data, raw prediction scores are adjusted to standard-scores by comparing to the cached mean and standard deviation from 
the null model. Additionally, permutations (p) are generated from the novel data and classified to ensure the novel data and the 
background distribution are distributed similarly.

Discussion

Datasets & Tools

Here we demonstrate a method for using cell line genomics and 
drug-response data to build robust therapy outcome predictors. 
We present here a case study of using this system to predict 
Dasatinib response in glioblastoma multiforme (GBM) patients.
First, we infer pathway-level knowledge of cancer cell lines by 
integrating multiple genome wide assays into curated pathways 
(PARADIGM[1]). Next we use a high-throughput machine-learning 
library (topmodel) to build, analyze, and rank, thousands of 
candidate predictive models of drug response. Then, we ensure 
our most accurate predictive models can be extrapolated to patient 
samples by using statistical methods to bound our predictions with 
confidence intervals.
Using these methods we identify a predictive task, Dasatinib 
sensitivity prediction, that is especially predictable using genome-
wide assays (77% accuracy in cross-validation). Among the 
datasets used to predict Dasatinib sensitivity, PARADIGM inferred 
pathway activities are more predictive than other data types. A 
statistically significant proportion of the cell lines that scored most 
highly sensitive were neural cell lines, suggesting some subset of 
gliomas may be uniquely responsive to Dasatinib.
We show that there is a proportional number of GBM patients that 
do conform to the Dasatinib-sensitive profile derived in cell lines.

(A) Dasatinib sensitiity by cell line type: Adjusted sensitivity scores for both labeled and unlabeled cell lines, and their 
respective accuracy in cross-validation. Note that cell lines correctly predicted as sensitive are enriched for neural system 
cell lines.

(B) Predicted Dasatinib sensitivity in primary patients: Adjusted sensitivity scores for TCGA samples in tissues that 
correspond to the training cell line panel. Note that tissue-effects behave similarly between cell line and patient data. 
Similarly to neural system lines, GBM samples are predicted to contain responder and non-responder subsets.

(C) TCGA GBM Dasatinib sensitivity diagnostic panel: PARADIGM inferred pathway activities projected onto the predictive 
model eigenvector. Note that a subset of genes associated with cell-cycle checkpoints are upregulated in sensitive 
samples. Conversely some genes associated with proliferation, angiogenesis and immune signaling are upregulated in 
resistant patients.

Drug predictability: Max, avg., and min accuracy gain over the 
majority classifier for each drug, sorted left-to-right by avg. 
accuracy. Drugs to the left are more consistently accurately 
predicted. The most consistently correctly predicted drug is 
Dasatinib.

Predictability of Dasatinib by 
different data types: PARADIGM 
inferred pathway activities based on 
expression was consistently the most 
predictive data type.

Presented here is a rational, data-driven method 
for stratifying individual patients into responders 
and non-responders to oncotherapeutics.

This approach:
• uses best-in-class genome-wide assays, 

pathway analysis, and machine learning 
techniques in combination

• is not rate-limited by laboriously identifying drug-
target interactions biochemically

• is agnostic to tissue of origin; Potential for 
rational drug reuse in novel contexts

• can recognizing when a prediction challenge is 
not surmounted by the given data

We present this approach with a potentially 
clinically-actionable demonstration: Identifying a 
subset of GBM patients who may respond to 
Dasatinib.
Dasatinib sensitivity in GBM xenografts (in 
combination with bevacizumab) has been 
demonstrated by others[2], leading to clinical trials 
in GBM patients being conducted.
At the time of writing 11 clinical trials are being 
conducted testing Dasatinib response in glioma 
patients. To the author’s knowledge none of these 
trials use any biomarkers to recruit or stratify 
participants. 
One such trial recently showed a very small 
proportion of GBM patients (3/50) have an 
increased 6mo PFS[3].
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